
Ganttis documentation

for Ganttis (macOS) and GanttisTouch (iOS) 2.2 — DlhSoft, 2022

Overview	
...4

Setup	
...5
Getting Ganttis package	
...5
Initializing Xcode project	
...5
Adding Ganttis framework	
...7
Using Ganttis components in storyboards	
..8
Importing and using Ganttis framework in code	
..9

Objective C considerations	
...10

Items and dependencies	
..11
Item management	
..11

Item fields	
..12
Dependency fields	
...13
Filtered objects	
..14

Handling changes	
..14
Newly created objects	
..15

Collections	
...15
Data source	
..16

Time values	
..17
Intervals	
...18

Diagram sizing settings	
..18
Zoom level	
...19
Scroll and zoom changes	
...19

Schedule and headers	
...19
Schedule definitions	
...20

Schedule objects	
..20
Header rows	
..22

Interval selectors	
...22
Label generators	
..25
Default formats	
..27
Shortcut initializer call examples	
...28
Dynamic rows	
..29

1

Chart intervals	
...29
Schedule based highlighting	
..30

Settings and styling	
...30
Options	
..31

Activating items	
...31
Editing items	
...31
Showing/hiding elements	
..32
Enabling/disabling features	
...33
Zoom limits	
...37

Appearance	
..37
Themes	
..43
Modes	
..44

Localization	
...45
Behaviors	
...46

Classic behavior set	
..46
Item source behavioral settings	
...47

Diagram algorithms	
...48
Dependency line settings	
...48
Diagram generator	
...48

Row headers	
..49
Custom drawing	
...49

Layout	
..49
Bars	
...50
Dependency lines	
...51
Time areas	
...51
Tooltips	
..51

Reloading data	
...52
Exporting images	
...52
Outline views	
...52

Data source	
..52
Settings	
..54

SwiftUI components	
..56
Gantt chart views	
...56

GanttChartView	
...56
OutlineGanttChartView	
...58

Alternative SwiftUI integration solution	
..60
2

Technical reference	
...61
Support	
..61
Licensing	
..61

Objective C considerations	...61

3

Overview

Ganttis framework 2 — designed and developed by DlhSoft using Swift 5.1 — allows you to
easily add outstanding interactive Gantt charts to your macOS 10.13+ and iOS 11.3+ apps
built with Xcode 11, displaying few to virtually trillions of scrollable items with cus-
tomizable timeline headers, schedule definitions, appearance, and behavior, optionally syn-
chronized with associated outline views (macOS).

While Gantt charts were originally used mostly to present project plans and associated re-
source assignments, they can actually be used in multiple other time-enabled contexts,
since any data type that defines one or more date-time fields can actually be mapped and
shown as bars (or as other kind of shapes) with optional labels, styling, and dependencies
between them, on a classic horizontal timeline.

Although it may be fully reconfigured by defining a custom schedule (specifying working
and nonworking times), by updating behavioral options, and by setting up overall or item-
level appearance styles (to name just a few of its features), a typical Gantt chart component
initialized using Ganttis framework and a project-like data hierarchy would look like this:

Ganttis framework is free to download and try for unlimited time, without any feature limi-
tations (a runtime warning screen would periodically let you know, however, that purchas-
ing and applying a product license is required for production purposes.)

Demo source code as well as simplified sample apps (for both macOS and iOS) are also
publicly available on GitHub.

Moreover, free and unlimited technical support (provided directly by developers!) is avail-
able regardless of whether you have yet ordered a product license or not.

4

https://dlhsoft.com/Ganttis
https://dlhsoft.com
https://dlhsoft.com/Ganttis/Download.aspx
https://dlhsoft.com/Ganttis/Purchase.aspx
https://dlhsoft.com/Ganttis/Purchase.aspx
https://github.com/DlhSoftTeam/GanttisDemos
https://github.com/DlhSoftTeam/GanttisSamples
https://dlhsoft.com/Ganttis/Support.aspx

Setup

Ganttis framework includes both macOS and iOS components. While most of their features
are similar and can be configured the same way on each of the supported platforms, initial
setup steps will partially depend on the actual target platform of your app.

Getting Ganttis package

To prepare for using the Gantt chart components in your apps, you need to download Gant-
tis package from DlhSoft Web site and extract it to a convenable location on your Mac.

Extracted content includes all the necessary binary files, packaged as an XCFramework bun-
dle to be referenced from your projects at development time. The correct binaries will be
linked by Xcode at build time, depending on the actual platforms that your targets specify.

The license agreement associated with Ganttis software is also included in the downloaded
archive. You should only use the product if you agree with all its terms and conditions.

Initializing Xcode project

If you already have a macOS or iOS app project, open it in Xcode, using Open command
from the File menu. Otherwise, you can create one by using New Project command from
Xcode’s File menu. For macOS, select Cocoa App template from Application section; for iOS,
select Single View App template (or another template that may better fit the requirements):

5

https://dlhsoft.com/Ganttis/Download.aspx

To complete the setup, define the project options that apply and select Swift programming
language in the following dialogs.

You can also select Objective C instead, but you will then need to refer to the last section of
this chapter for follow up information on how to perform calls to the Ganttis APIs from
your app (Swift integration code is required.)

6

Adding Ganttis framework

Add Ganttis framework (that you have extracted from the archive downloaded from Dlh-
Soft Web site) to the project and ensure it is set to be embedded and signed within each of
the targets that you need it to be accessible from:

7

Using Ganttis components in storyboards

You can use GanttChart component, for example, as a View within a storyboard. To set it up,
enter GanttChart as Custom Class under Identity Inspector when the view is selected, and
Ganttis (or GanttisTouch, for iOS) as Module:

Another helpful type is OutlineGanttChart, representing a chart with outline view (macOS).

8

Importing and using Ganttis framework in code

To to be able use Ganttis components in code, such as in your ViewController, simply import
the appropriate module (Ganttis or GanttisTouch):

You can then create an Interface Builder outlet from the storyboard’s GanttChart view as
usual — Option-click the code file while the storyboard is selected to open it in the Assistant
Editor, Control-drag the view to the location in code where the new outlet should be creat-
ed, enter a name for the associated variable (e.g. ganttChart) and click Connect:

To set up the GanttChart component, write code in the appropriate NSViewController (or
UIViewController) class to define a GanttChartController instance, which would in turn need
header and content controllers. The underlying controllers layer provides all services that
the user interface components need. The content controller can be initialized using a simple
item array as data source (or using a highly customizable GanttChartItemManager instead):

class ViewController: NSViewController {
 @IBOutlet var ganttChart: GanttChart!
 override func viewDidLoad() {
 super.viewDidLoad()

 let item1 = GanttChartItem(

 label: "Item 1", row: 0,
 start: Time(year: 2019, month: 03, day: 17, hour: 0),
 finish: Time(year: 2019, month: 03, day: 18, hour: 24))

 …
 let items = [item1, …]

macOS iOS
import Ganttis import GanttisTouch

9

 let headerController = GanttChartHeaderController()
 let contentController = GanttChartContentController(items: items)
 contentController.desiredScrollableRowCount = 10
 contentController.scrollableTimeline = TimeRange(

 from: item1.start, to: item2.finish.adding(weeks: 2))
 let controller = GanttChartController(

 headerController: headerController,
 contentController: contentController)
 ganttChart.controller = controller
 }
}

Objective C considerations

Ganttis framework has been developed in pure Swift, and therefore to access its API from
classic Objective C code you will need to define a Cocoa bridging class in Swift. This class
may be a ViewController with an associated .xib definition that reuses GanttChart inside:

class GanttChartViewController: NSViewController {
 @IBOutlet var ganttChart: GanttChart!
 override func viewDidLoad() {
 super.viewDidLoad()
 ganttChart.controller = …
 }
}

10

Items and dependencies

GanttChartContentController class that governs the main chart area of a GanttChart compo-
nent uses a GanttChartItemManager instance to handle data items represented as bars in
the view and item dependencies shown using segmented arrow lines between the item bars.

The controller provides all user interface services needed by the component exposed to the
end user and allows the developer to configure its settings and behavior as needed.

Note that for a main GanttChart component the GanttChartContentController would be part
of a GanttChartController container object that links it to a GanttChartHeaderController:

let headerController = GanttChartHeaderController()
let contentController = GanttChartContentController(itemManager: itemManager)
let controller = GanttChartController(headerController: headerController,
 contentController: contentController)
ganttChart.controller = controller

Item management

You can create a GanttChartContentController instance in a convenient way by passing a col-
lection of items (and optionally one of dependencies as well) instead of a manager in-
stance. In this case, a GanttChartItemSource object that inherits from GanttChartItemMan-
ager is created under the hood, providing all the necessary management features:

let items = […]

let dependencies = […]

let contentController = GanttChartContentController(items: items,

 dependencies: dependencies)

You may use a custom manager object if you want to achieve better performance or if you
need specialized item management services, though. Such a custom manager object can be
defined in two ways: as an instance of custom class that inherits from GanttChartItemMan-
ager and overrides its functions, or (recommended) as a direct instance initialized with an
object that conforms to the GanttChartCollectionProvider protocol:

class ViewController: NSViewController, GanttChartCollectionProvider {

 override func viewDidLoad() {

 let itemManager = GanttChartItemManager(collectionProvider: self)

 let contentController = GanttChartContentController(

 itemManager: itemManager)

 …

 }

 var totalRowCount: Int { return … }

 var preferredTimeline: TimeRange { return TimeRange(from: …, to: …) }

 func filteredItems(range: RowRange,

 timeline: TimeRange) -> [GanttChartItem] {

 return […]

 }

 func filteredDependencies(range: RowRange,

 timeline: TimeRange) -> [GanttChartDependency] {

 return […]

 }

}

11

Item fields

Regardless of the manager type you use, individual GanttChartItem objects may be defined
using these main fields:

All fields are optional, except for row and time, so items can easily be created using shorter
initializer forms:

var item = GanttChartItem(label: "A", row: 0,

 start: date1, finish: date2)

The item fields and their correspondence to the elements of associated bar presented in the
user interface are shown below:

Note that the details of the item will be displayed as a tooltip upon hovering the associated
bar.

Also note that the completion bar is bound to a timeline position that depends on the actual
working time that the item spans, and therefore its screen width is not always proportional
to the item’s completion rate.

label Text to be displayed on the bar in chart.

row Determines the vertical position of the bar; multiple items may
share the same row value, for example when defining a schedule
chart that would display all tasks assigned to an individual resource
in a single row.

start, finish (time) Values defining the interval that the item spans, available as well as
an aggregating range field (time).

completion The rate of completion for the item, between 0 and 1.

attachment Text to be displayed to the right of the bar in chart.

details Text to be displayed as tooltip when the end user would hover the
bar (macOS only).

type Defines how to represent the item in chart: as standard bar
(default), milestone diamond, or summary polygon.

start finish

label attachment

row

completion

12

The available item types and their shape correspondence in the user interface are also indi-
cated in the screenshot below:

Dependency fields

You can define item dependencies as GanttChartDependency objects using these fields:

All fields are optional, except for from and to:

var dependency = GanttChartDependency(from: item1, to: item2,

 type: .fromStartToStart)

The available dependency types are presented in the screenshot below:

summary

standard

milestone

from, to The items that the dependency is defined between.

details Text to be displayed as tooltip when the end user would hover the
arrow line (macOS only).

type Defines the dependency type: fromFinishToStart (default), from-
StartToStart, fromFinishToFinish, or fromStartToFinish.

fromStartToFinish

fromFinishToFinishfromStartToStart

fromFinishToStart

13

Filtered objects

For optimization purposes GanttChartItemManager object allows its owner (e.g. the con-
troller of the user interface component) to set range and timeline properties for specifying
the rows and interval that are to be considered active (i.e. scrolled to) at a specific moment,
and would allow retrieving the items and dependencies that are matching those filters
through filteredItems and filteredDependencies properties.

You can, of course, also use these arrays to browse the (fully or partially) visible items and
dependencies on screen.

Handling changes

If the developer doesn’t disable the feature, end users may change items and dependencies
directly in the user interface of the Gantt chart.

For example, users can drag a bar horizontally to update its item’s start and finish fields at
the same time, resize the bar to update start or finish and increase or decrease the duration
of the item, resize a completion bar to update the completion rate for the item, drag a bar
vertically from its bottom to change its associated row value, draw new dependency lines
between items by performing drag and drop operations (starting from a thumb that would
appear when hovering one of the from item’s bar ends, and finishing on the start or finish
area of the to item’s bar), delete items and dependencies using context menus, and so on:

For your code to react to data field changes triggered in the application by the end user you
may implement GanttChartItemObserver protocol and bind the implementation to the item
manager instance of the controller:

class ViewController: NSViewController, GanttChartItemObserver {

 override func viewDidLoad() {

 let contentController = GanttChartContentController(…)

 contentController.itemManager.itemObserver = self

 …

 }

 func itemWasAdded(_ item: GanttChartItem) { … }
 func timeDidChange(for item: GanttChartItem,

 from originalValue: TimeRange) { … }
 func completionDidChange(for item: GanttChartItem,

 from originalValue: Double) { … }
 func rowDidChange(for item: GanttChartItem,

 from originalValue: Row) { … }
 func itemWasRemoved(_ item: GanttChartItem) { … }
 func dependencyWasAdded(_ dependency: GanttChartDependency) { … }
 func dependencyWasRemoved(_ dependency: GanttChartDependency) { … }
}

14

To propagate item and dependency changes to appropriate external source objects (such as
to persist updates in specific tables of the source database), you can use this approach:

• set the context field (of type Any) of each item and dependency to the key field value of
the source data item (such as the data table’s identifier column) or to the reference of an
external object that encapsulates it when using data entity abstraction layers;

• use this context value from the item or dependency received in the notification (i.e. avail-
able as method arguments in the observer protocol’s implementation) to find the appro-
priate data source rows or objects and update them according to the identified changes.

Newly created objects

In case you (also) need to customize the way items and dependencies are set up when they
are created by the end user, you can implement GanttChartItemFactory protocol (as well):

class ViewController: NSViewController, GanttChartItemFactory {

 override func viewDidLoad() {

 let contentController = GanttChartContentController(…)

 contentController.itemManager.itemFactory = self

 …

 }

 func createItem(row: Row, time: Time, isMilestone: Bool) -> GanttChartItem {

 return GanttChartItem(…)

 }
 func createDependency(from: GanttChartItem, to: GanttChartItem,

 type: GanttChartDependencyType)

 -> GanttChartDependency {

 return GanttChartDependency(…)

 }
}

Collections

Item and dependency collections may be updated and queried for computed values after
initialization too, through GanttChartItemManager object’s interface, as follows:

addNewItem Creates and adds a new item on the specified row and at the speci-
fied time, optionally being of type milestone.

removeItem Removes an existing item.

addNewDependency Creates and adds a new dependency between the specified from and
to items, using the optionally specified type.

removeDependency Removes and existing dependency.

scheduledDuration Computes the total scheduled duration for an item (from start to
finish), optionally in a specific time unit.

completedDuration Computes the completed duration for an item, optionally in a spe-
cific time unit, considering the total scheduled duration and the
completion rate of the item.

15

Data source

If you would like to develop your own item collection with a custom data source you may
inherit from GanttChartItemManager and (optionally) override these main properties and
methods:

• sourceTotalRowCount, sourcePreferredTimeline;

• sourceFilteredItems, sourceFilteredDependencies;

• addNewSourceItem, removeSourceItem, createNewSourceItem;

• addNewSourceDependency, removeSourceDependency, createNewSourceDependency.

The source- properties should return the values to be used as total row count, preferred
timeline (scrollable interval) and the filtered items and dependencies given the current
range and timeline (properties of GanttChartItemManager base class.)

createSource- methods (if overridden) should return new objects of appropriate type (ini-
tializing directly, or inheriting from GanttChartItem and GanttChartDependency classes), al-
locating their associated data objects or identifiers, as needed; if they are not overridden
the base class’ methods would simply call the factory instead.

timeCompletedUntil Computes the date and time up to which the completed duration
goes since the item’s start.

updateTime Updates an item to start on a specific value.

updateDuration Updates and item’s start or finish to ensure a specific scheduled du-
ration.

updateCompletion Updates an item’s completion rate to ensure a specific completed du-
ration.

updateRow Updates an item’s row, moving an item vertically.

schedule Determines the schedule definition to apply to an item, being either
the schedule at the item level if it was defined, or the schedule of
the manager object otherwise.

applySchedule Updates the schedule for all items in the managed collection, or for
a single specified item applying the schedule definition changes.
This is useful if you modify schedule definitions directly, or if they
use logic that would change if re-run (such as to determine exclud-
ed intervals), and you want the collection refreshed.

collectionDidChange Call this method for observers (such as the user interface) to be no-
tified one or more properties may have been changed for the man-
aged items without using item manager’s interface. This is useful if
you modify item properties directly, and you want the user interface
to be refreshed accordingly.

16

addNewSource- methods should internally call the built-in or custom createSource- methods
and add the appropriate associated objects to the external data source. They are called be-
fore the objects are added to the managed context.

removeNewSource- methods are called just before objects are removed from the managed
context, to allow you to remove the associated data objects from the external source.

As already indicated, GanttChartItemSource class inherits from GanttChartItemManager too,
defining its own data source as a tuple of item and dependency arrays (items and dependen-
cies properties, passed at initialization time.)

By design, the total row count and preferred timeline of a GanttChartItemSource are com-
puted based on row and time values of the items in the managed context. Filtered items are
matching range and timeline, as expected, and filtered dependencies are those that span
from or to any of these filtered items.

Time values

Gantt chart items and multiple other framework objects use the Time structure to record
dates and times, rather than foundation’s Date, while full casting capabilities to and from
Date values are, of course, provided. Time values are internally defined using these mem-
bers in order to have the data optimized for the user interface at all times:

For convenience, however, Time values can also be initialized by passing:

Note that to properly support interval finish times, 24:00:00 value is considered as a valid
time of day. By using end-of-day time values you don’t need to check for special midnight
cases anymore — the date would still represent the actual ending day, and not the follow-
ing one. (While, of course, comparing Time values continues to work as expected: the end
of day midnight equals the start of the following day.)

You can compute a Time value shifting the current value with a specified duration by call-
ing its adding method.

week The number of weeks passed since reference week of 1/1/2001
(technically the first day of week 0 is Sunday, 12/31/2000).

dayOfWeek The day of week (Sunday=0 to Saturday=6).

timeOfDay Time of day in seconds passed since midnight, up to the next mid-
night (inclusive).

dayNumber or 
year, month, day

The number of days passed since reference date of 1/1/2001 or its
Gregorian calendar components.

hours, minutes,  
seconds

Time of day components, from 00:00:00 to 24:00:00 (inclusive).

17

Intervals

The TimeRange structure allows defining a time interval as well, between start and finish
Time values (e.g. the time property of GanttChartItem instances.)

A time range value offers support to easily determine interval duration in seconds or anoth-
er (specified) time unit, to shift the interval at both ends by a specific duration, to check
whether the interval contains a specific Time value or not, and to determine its intersection
with another TimeRange.

A time range can be entropic, meaning that finish time is after start. When finish equals
start, it also becomes momentary. (Note: momentary ranges are still considered entropic.)

Diagram sizing settings

To configure the size of the item bars and attachment labels in the chart you may set row-
Height, hourWidth, and attachmentLabelWidth properties of GanttChartContentController.

When both content and headers are used (such as with an aggregated GanttChart compo-
nent instance), hourWidth is controlled using the (otherwise synchronized) GanttChart-
HeaderController’s property, though:

contentController.rowHeight = 28

headerController.hourWidth = 2.8

contentController.attachmentLabelWidth = 100

To configure the scrollable timeline of the diagram if you don’t want it to be automatically
updated based on items’ start and finish values, set content controller’s scrollableTimeline
property to the required time range:

let now = Time(year: 2019, month: 03, day: 17, hour: 0)
let later = now.adding(weeks: 5)
contentController.scrollableTimeline = TimeRange(from: now, to: later)

And finally, if you want to ensure that the diagram defines vertical space for a minimal row
count instead of it being based on items’ row values alone, set the desiredScrollableRow-
Count property as well:

contentController.desiredScrollableRowCount = 20

Note that on iOS there are inherent limits for the total size of the chart area, due to the per-
formance-oriented design of the UIView instances that Gantt chart components use. There-
fore you should carefully set up (and throughly test) the selected hourWidth and rowHeight
values in conjunction with the scrollableTimeline and maximum row count, controlled by
desiredScrollableRowCount and itemManager.totalRowCount + extraRowCount.

By default extraRowCount value of the content controller is set to 1, to show one supple-
mental empty row to the bottom of the diagram, allowing end users to increase the total
count by dragging items vertically to that row.

18

Zoom level

Setting content controller’s hourWidth property allows the developer to control the default
widths of the bars in the diagram. However, the actualHourWidth computed at runtime is
also considering an arbitrary zoom level property, zoom, which is by default 1 (100%).

The developer is allowed to set the initial zoom level of the diagram by just updating this
value at component instance setup time, and then the end user is also able to increase or
decrease the zoom level by performing a drag operation on the chart headers area (macOS
and iOS) and/or by a pinch gesture on the main chart area itself (iOS):

contentController.zoom = 1.5

Scroll and zoom changes

Scroll and zoom changes are notified through GanttChartContentViewportObserver protocol.

Schedule and headers

Once the items and dependencies are set up in the Gantt chart, it’s time to also configure
their working and nonworking time, optionally synchronized with the headers that are dis-
played at the top of the diagram, and with in-chart vertical separators and highlights for
different time intervals as needed in your application.

For example, items may be configured to be managed within the range of a standard Mon-
day to Friday week, and between 8 AM and 4 PM each day, excepting holidays. Or you may
want them to use the interval of 8 AM to 5 PM each day with 1 hour break between 12 PM
and 1 PM. Or set up that Fridays are shorter days, ending at 3 PM.

Other times, however, the continuous schedule (Sunday-Saturday, 24 hours/day) might fit
better. Or a full Sunday-Saturday week, but with only the standard 8 hours each day. Or a
standard Monday-Friday week, but with 3 shifts per day. (Or any combination of these.)

Moreover, in the user interface you may want to display more (or less) time than the work-
ing intervals. For example, even when you have set up a standard week as working time,
you might still want to display weekends and holidays — yet probably slightly highlighted
— to allow the end user easily understand the real duration of the items in the chart:

Standard week schedule

Highlighting nonworking time

19

And of course, besides the schedule based highlighting the developer may want to specifi-
cally highlight one or more sets of time intervals with different colors, to identify certain
periods, as necessary in your specific application.

Of course, the diagram headers are used to allow the end user to identify the actual dates
and times that the visible items share. You might want to display only one header (such as
for individual days), two (e.g. weeks and days, months and weeks, or days and hours, op-
tionally with periods, such as to show shifts), a custom number of headers with custom in-
tervals, or even a custom range updating based on the zoom level of the diagram:

Month-week-day headers

Day-shift headers

Schedule definitions

To specify the working and nonworking time for items to use (or to indicate which time in-
tervals should be visible and/or which to be highlighted and which not), Ganttis module
offers two types: ScheduleDefinition and Schedule.

ScheduleDefinition can be used as base class for custom schedules, overriding its members:

A hasExcludedIntervals flag also provides a general way to optimize Ganttis algorithms
when no nonworking time intervals would be ever returned by excludedIntervals function.

Alternatively, you can initialize a ScheduleDefinition instance by passing a ScheduleDefini-
tionProvider object (that would also be an ExcludedTimeIntervalProvider.) ScheduleDefini-
tionProvider protocol defines the same members except for hasExcludedIntervals flag.

Schedule objects

Schedule class inherits from ScheduleDefinition and hosts excluded intervals as an array
rather than defining them through a function. It can optionally be enriched using a custom
ExcludedTimeIntervalProvider object, though (and that can be a functionally customizable

weekInterval Defines the working days of week (e.g. Monday to Friday.)

dayInterval Defines the working time of day (e.g. 8 AM to 4 PM.)

excludedIntervals Function that defines nonworking time intervals (e.g. holidays or
breaks) given an input time range.

20

ExcludedTimeIntervalSource). It’s therefore the preferred way to define working and non-
working time when you use Ganttis components:

let schedule = Schedule(

 weekInterval: WeekRange(from: .monday, to: .thursday),

 dayInterval: DayRange(

 from: TimeInterval(from: 8, in: .hours),

 to: TimeInterval(from: 16, in: .hours)),

 excludedIntervals: [

 TimeRange(from: time11, to: time12),

 TimeRange(from: time21, to: time22)],

 excludedIntervalProvider: ExcludedTimeIntervalSource { time, limit in

 return [TimeRange(…), …] })

The excluded interval source function would receive a Time value to determine the exclud-
ed intervals around (as an array of TimeRange values), and the limit up (or down) to which
those intervals are needed.

The limit is also a Time value and it indicates the direction in which the intervals are need-
ed (when it’s not the same as the time value, in which case you would just need to return
the intervals that contain that moment) and it’s very useful to avoid infinite (or too long)
search loops that may otherwise try to identify the next (but far away) excluded intervals
starting from that specific time value.

Note that usually the excluded interval source’s function would just need to return the
largest interval near the input time towards the limit, but the API supports returning an en-
tire array as well to allow your logic to be simplified, whenever possible (and avoid the ac-
tual sorting and single interval selection, which can also be made by Ganttis module itself.)

Some static (built-in) schedule instances are provided on Schedule class:

As previously mentioned, schedule definition instances are used in multiple settings areas
of Ganttis components. The most important ones are listed below:

continuous Sunday to Saturday, midnight to next midnight (24/7).

standard Monday to Friday, 8 AM to 4 PM.

fullWeek Sunday to Saturday, 8 AM to 4 PM.

fullDay Monday to Friday, midnight to next midnight.

contentController. 
visibilitySchedule

Sets the visible timeline of the chart (excluded intervals are
hidden).

itemManager. 
schedule

Sets the default working (and nonworking) time of the items dis-
played in the diagram.

item.schedule Sets specific rules for the working (and nonworking) time for a spe-
cific item displayed in the diagram (overriding itemManager.sched-
ule).

21

Header rows

To set up the Gantt Chart header rows you will need to initialize the rows collection of
GanttChartHeaderController using GanttChartHeaderRow instances:

headerController.rows = [

 GanttChartHeaderRow(.weeks, format: "dd.MM"),

 GanttChartHeaderRow(.days, format: .dayOfWeekAbbreviation)]

Technically, the GanttChartHeaderRow initializer supports either one instance or an array of
TimeSelector objects as input argument:

let headerRow = GanttChartHeaderRow(selector)

let multiSelectorHeaderRow = GanttChartHeaderRow([selector1, selector2])

However, in practice, it is usually enough to associate one time selector to each header row.

(You would associate multiple selectors to a single row only if you’d want multiple types of
intervals shown in the same header, but even then, only one of them should have labeled
values displayed.)

The TimeSelector object initializer receives two arguments: a TimeIntervalSelector used to
define which would be the header intervals within the visible time range, and a TimeLabel-
Generator that prepares the text to be displayed as labels for the visible header intervals:

let selector = TimeSelector(intervalSelector: intervalSelector,

 labelGenerator: labelGenerator)

The interval selector and label generator objects may be custom instances, but a TimeSelec-
tor extension offers multiple convenience initializers as well, allowing you to set up the ac-
tual arguments providing a TimeIntervalType enumeration value and optionally associated
values such as label format and locale, and an intervals Boolean flag that would indicate
whether the values for both interval ends (start and finish) should be used (optionally sepa-
rated by a custom separator string overriding the dash based default.) The weeks and days
header rows exemplified in the beginning of this section use TimeSelector shortcut initializ-
ers.

Note that format (and all associated arguments) may also be omitted and in this case the
actual text format of the label values is determined by the selected interval type.

Interval selectors

You can set up an interval selector for a header row using an object that implements Time-
IntervalSelector protocol, such as PeriodSelector, CalendarPeriodSelector, or a functionally
customizable TimeIntervalSource.

22

PeriodSelector objects allow you to define interval selectors based on weeks, days, half-days,
hours, minutes, seconds, or submultiples of second. They can be periodically repetitive (e.g.
repeat every 3 days, or every 90 minutes) and they may start with a time offset (phase) if
needed (e.g. every day starts at 6 AM, or every hour starts at minute 30):

let intervalSelector = PeriodSelector(

 period: 1.5, in: .hours,

 schedule: .standard, origin: projectStart,

 offset: 30, offsetIn: .minutes)

The initialization above would create an interval selector that returns periods of 1.5 hours,
considering only the standard schedule (Monday to Friday, 8 AM to 4 PM), starting at pro-
jectStart time and with an offset of 30 minutes.

CalendarPeriodSelector objects allow you to define interval selectors based on months, quar-
ters, years, or multiples of year. They can be periodically repetitive (e.g. repeat every 3
months, or every 2 years) and they may start with a time and/or calendar offset (phase) if/
as needed (e.g. every month starts on day 10, or every year starts at hours 12:00 on the
first day):

let intervalSelector = CalendarPeriodSelector(

 period: 2, in: .quarters,

 origin: projectStart,

 calendarOffset: 1, calendarOffsetUnit: .months,

 offset: 10, offsetIn: .days)

The initialization above would create an interval selector that returns periods of 2 quarters,
starting at projectStart time and with an (aggregated) offset of 1 month and 10 days.

Special time interval selector objects can be created using MomentPeriodSelector class which
allows defining time intervals for or between specific time values:

let intervalSelector = MomentPeriodSelector(

 for: [time1, time2], separating: true)

The initialization above would create an interval selector that generates intervals from the
past to time1, between time1 and time2, and from time2 to the future.

Also, EnclosedTimeIntervalSelector may be used to return the same intervals as the interval
selector object passed to it upon initialization, except that the intervals at the start and fin-
ish of the range for which the intervals are needed (e.g. the visible timeline) are trimmed to
the limits of the range itself. This is very useful to generate intervals that update dynamical-
ly on screen when the end user scrolls the diagram horizontally, showing the visible start
and/or finish time displayed in the current viewport:

let intervalSelector = EnclosedTimeIntervalSelector(

 PeriodSelector(

 period: 1.5, in: .hours,

 schedule: .standard, origin: projectStart,

 offset: 30, offsetIn: .minutes))

23

The initialization above would create an interval selector that is similar to the PeriodSelector
defined as the first example, but the output intervals would be limited, at runtime, to the
visible timeline of the GanttChart view.

For convenience, appropriate interval selectors are available when calling a shortcut TimeS-
elector initializer with a TimeIntervalType value:

days(period, startingAtHours) Selects days with optionally defined period and offset in
hours.

weeks(period, startingOn) Selects weeks with optionally defined period and offset
in days (given by start day of week.)

monthly(period, startingOn) Selects months with optionally defined period and offset
in days (given by start day of month.)

quarters(period, 
startingOnMonthOfQuarter)

Selects quarters with optionally defined period and off-
set in months (given by start month of quarter.)

years(period, 
startingOnMonth)

Selects years with optionally defined period and offset in
months.

decades(period, 
startingOnYearOfDecade),

centuries, millennia

Selects decades (or centuries, millennia) with optionally
defined period and offset in years.

halfdays(period, 
startingAtHour)

Selects half-days with optionally defined period and off-
set in hours (given by start hour of half-day.)

hours(period, 
startingAtMinute)

Selects hours with optionally defined period and offset
in minutes.

minutes(period, 
startingAtSecond)

Selects minutes with optionally defined period and offset
in seconds.

seconds(period, 
startingAtMillisecond),

deciseconds, centiseconds

Selects seconds (or deciseconds, centiseconds) with op-
tionally defined period and offset in milliseconds.

milliseconds(period, 
startingAtNanosecond)

Selects milliseconds with optionally defined period and
offset in nanoseconds.

time(value[s], separating) Selects the specified moment values (if separating flag is
false, as by default) or the intervals between those mo-
ments (if separating flag is true).

visibleTimeline(type) Selects the same intervals as an interval selector created
for the specified type, except that they would be trimmed
to the visible timeline in the chart area.

24

Label generators

You can set up a label generator for a header row using an object that implements Label-
Generator protocol, such as FormattedTimeLabelGenerator, FormattedTimeIntervalLabelGen-
erator, DurationTimeLabelGenerator, DurationTimeIntervalLabelGenerator, or a functionally
customizable TimeLabelSource.

FormattedTimeLabelGenerator and FormattedTimeIntervalLabelGenerator return label values
using a DateFormatter. The latter returns texts identifying both the start and the finish times
of the interval that the label refers to (separated by a dash or by the specified optional sep-
arator):

let dateFormatter = DateFormatter()

dateFormatter.dateFormat = "yyyy-MM-dd"

let labelGenerator = FormattedTimeLabelGenerator(dateFormatter)

let intervalLabelGenerator = FormattedTimeIntervalLabelGenerator(dateFormatter,

 separator: "/")

DurationTimeLabelGenerator and DurationTimeIntervalLabelGenerator return label values by
counting intervals, considering a reference time, an optional schedule, and returning either
one-based (default) or zero-based values, and excluding (default) or including negative
numbers. The latter returns texts identifying both the start and the finish times of the inter-
val the label refers to (separated by a dash or by the specified optional separator):

let labelGenerator = DurationTimeLabelGenerator(

 reference: projectStart,

 in: .hours,

 schedule: .standard,

 zeroBased: true,

 includingNegativeValues: true)

let intervalLabelGenerator = FormattedTimeIntervalLabelGenerator(

 reference: projectStart,

 in: .hours,

 schedule: .standard,

 zeroBased: true,

 includingNegativeValues: true,

 separator: "/")

For convenience, appropriate label generators are however available when calling a short-
cut TimeSelector initializer with format, locale, intervals, and optional separator values. The
table below indicates the returned generator for specific format arguments:

dateTime Short date and time styles.

longDate Full date style and no time value.

date Medium date style and no time value.

shortDate Short date style and no time value.

time Medium time style and no date value.

shortTime Short time style and no date value.
25

day "d" format string (1-31 days).

dayWithLeadingZero "dd" format string (01-31 days).

dayMonth "d MMMM" format string (e.g. “19 March”).

dayMonthYear "d MMMM yyyy" format string (e.g. “19 March 2019”).

dayOfYear "D" format string (1-366 days).

dayOfYearWidthLeadingZeroes "DDD" format string (001-366 days).

dayOfWeek "EEEE" format string (e.g. “Tuesday”).

dayOfWeekShortAbbreviation "EEEEE" format string (e.g. “T”).

dayOfWeekAbbreviation "EEEEEE" format string (e.g. “Tu”).

dayOfWeekLongAbbreviation "E" format string (e.g. “Tue”).

weekOfMonth "W" format string (1-5 weeks).

weekOfYear "w" format string (1-53 weeks).

weekOfYearWithLeadingZero "ww" format string (01-53 weeks).

month "MMMM" format string (e.g. “March”).

monthShortAbbreviation "MMMMM" format string (e.g. “M”).

monthAbbreviation "MMM" format string (e.g. “Mar”).

monthNumber "M" format string (1-12 months).

monthNumberWithLeadingZero "MM" format string (01-12 months).

monthYear "MMMM yyyy" format string (e.g. “March 2019”).

quarter "QQQ" format string (e.g. “Q1”).

quarterNumber "Q" format string (1-4 quarters).

quarterYear "QQQ yyyy" format string (e.g. “Q1 2019”).

year "yyyy" format string (e.g. “2019”).

yearOfCentury "yy" format string (00-99 years).

periodOfDay "a" format string (AM, PM periods).

hour "H" format string (0-23 hours).

hourWithLeadingZero "HH" format string (00-23 hours).

hourOfPeriod "h" format string (1-12 hours).

hourOfPeriodWithLeadingZero "hh" format string (01-12 hours).

minute "m" format string (0-59 minutes).

minuteWithLeadingZero "mm" format string (00-59 minutes).

26

Default formats

If the format is not specified when you use shortcut TimeSelector initializers there are de-
faults that would apply automatically, depending on passed interval type, as indicated in the
table below:

second "s" format string (0-59 seconds).

secondWithLeadingZero "ss" format string (00-59 seconds).

decisecond "S" format string (1 fractional digit of second value).

centisecond "SS" format string (2 fractional digits of second value).

millisecond "SSS" format string (3 fractional digits of second value).

secondWithDecisecond "ss.S" format string (00.0-59.9 seconds).

secondWithCentisecond "ss.SS" format string (00.00-59.99 seconds).

secondWithMillisecond "ss.SSS" format string (00.000-59.999 seconds).

numeric(reference, in unit, 
schedule, zeroBased, 
includingNegativeValues)

Numbers representing the durations passed since a ref-
erence time, using a specific time unit, and optionally
considering a schedule for measuring the passing time.
The values can be set as well to be zero-based (by de-
fault they are one-based) and optionally the negative
values may be returned as labels as well (by default neg-
ative values are omitted).

none No text label.

string (e.g. “dd-MM-yyyy") Using the specified formatter string (e.g. “19-03-2019”).

not specified Default format based on interval type — see the follow-
ing section for details.

days dayWithLeadingZero

weeks shortDate

monthly monthYear

quarters quarterYear

years year

decades, centuries, millennia year

halfdays periodOfDay

hours hourWithLeadingZero

minutes minuteWithLeadingZero

seconds secondWithLeadingZero

27

Shortcut initializer call examples

As mentioned, header row sets may be easily created using TimeSelector shortcut initializ-
ers. Here are several call examples with screenshots (although not a complete list — a full
comprehensive collection could only be obtained by combining all possible interval types
and formats presented in the previous sections.)

Each set is actually going to be passed as an array argument to the TimeSelector initializer,
but the actual call is removed for brevity from the table below:

headerController.rows = […]

deciseconds decisecond

centiseconds centisecond

milliseconds millisecond

time(separating: true) dateTime

time(separating: false) none

visibleTimeline(type) Default format for the specified interval type.

.weeks(startingOn: .monday), format: .date

.days, format: .dayOfWeekLongAbbreviation

.visibleTimeline(.months, format: .month)

.visibleTimeline(.weeks,

 format: .dayWithLeadingZero)

.days, format: .dayOfWeekShortAbbreviation

.days(period: 5), format: .dayMonth

.days, format: "EEEEE-d"

.weeks(startingOn: .monday)

.days, format: .numeric(

 in: .days, schedule: .standard)

.weeks, format: .numeric(in: .weeks)

.days(period: 2), format: .numeric(

 in: .days, intervals: true)

.years, format: .yearOfCentury

.quarters, format: .quarter

.months, format: .monthAbbreviation

.weeks, format: .day

.days(startingAtHours: 8), format: .date

.hours, format: .hourOfPeriod

.hours, format: .numeric(

 in: .minutes, intervals: true)

.minutes(period: 15), format: .numeric(

 in: .minutes, zeroBased: true)

28

Dynamic rows

If you want the diagram to update header rows depending on the actual zoom level at any
certain time, you can configure a rowSelector for your header controller this way:

class ViewController: NSViewController, GanttChartHeaderRowSelector {

 override func viewDidLoad() {

 let headerController = GanttChartHeaderController(…)

 headerController.rowSelector = self

 …

 }

 func rows(for hourWidth: Double) -> GanttChartItem {

 if hourWidth < 7.5 {
 return [

 GanttChartHeaderRow(.months),

 GanttChartHeaderRow(.weeks, format: "dd"),

 GanttChartHeaderRow(.days, format: .dayOfWeekShortAbbreviation)]
 } else {
 return [

 GanttChartHeaderRow(.weeks, format: "dd MMM"),

 GanttChartHeaderRow(.days, format: .dayOfWeekShortAbbreviation)]
 }
 }
}

rows function (defined by GanttChartHeaderRowSelector protocol) should return an array of
GanttChartHeaderRow objects depending on the actual hourWidth value (which changes
upon zoom level changes) received as input argument.

Of course, you can reuse the same header row type (such as the days header above) or you
can return different header rows and even a different number of them (such as 2 or 3
above) when hourWidth falls in a certain range, as needed. Note that header row height
will update automatically in case the header count changes to allow all rows to still fit into
and span all the original header space.

Chart intervals

When you set up header rows their settings only apply for the header area itself. If you
want to have vertical separators or highlighting settings applying to specific intervals in the
main chart area too, you will need to set intervalHighlighters property of GanttChartCon-
tentController, and you would need to rely again on one or more TimeSelector instances.

TimeSelector type, already described in the previous section, is used here to select the inter-
vals to be highlighted in the chart area. You would usually copy the values that you have set
on the main header rows (although it’s not technically required), but you wouldn’t usually
display text labels in the main chart area, though (while texts are, nevertheless, supported):

contentController.intervalHighlighters = [

 TimeSelector(.months), TimeSelector(.weeks),

 TimeSelector(.time)]

Note that by adding a time based selector (like in the example above), you would configure
the chart to render an automatically updating vertical line for the current time, too.

29

Schedule based highlighting

If you want to highlight entire working or nonworking time of a schedule object, you can
set scheduleHighlighters property of GanttChartContentController, using an array of Sched-
uleTimeSelector objects. Technically you can highlight working or nonworking intervals gen-
erated by multiple schedules, but you would usually select only one for this purpose.

ScheduleTimeSelector type requires you to identify a schedule object upon initialization, and
you can indicate whether you want to select working or nonworking time for that definition
by passing it with timesOf or timeoutsOf label, respectively:

let nonworkingTimeHighlighter = ScheduleTimeSelector(timeoutsOf: customSchedule)

contentController.scheduleHighlighters = [nonworkingTimeHighlighter]

You may also use a shortcut ScheduleTimeSelector initializer, allowing you to easily select
one of these enumeration values as argument, instead:

contentController.scheduleHighlighters = [ScheduleTimeSelector(.weekends)]

Settings and styling

Multiple settings are available to allow you to configure the Ganttis components, being ac-
cessible either directly through controller properties or from settings properties of the ob-
jects:

controller.value = … 
contentController.value = …
headerController.value = …

contentController.settings.value = …
headerController.settings.value = …

Some settings, however, are (also) available for individual items or dependencies:

item.settings.value = …

dependency.settings.value = …

workdays Standard working time (8 AM to 4 PM, Monday to Friday).

workbreaks Standard nonworking time (midnight to 8 AM and 4 PM to next
midnight, Monday to Friday).

days Standard working time for all week days (8 AM to 4 PM, each day).

nights Standard nonworking for all week days (midnight to 8 AM and 4
PM to next midnight, each day).

weekdays All time of standard working days (24h, Monday to Friday).

weekends All time of standard nonworking days (24h, Sunday and Saturday).

30

Options

Multiple options are available to select at development time. You can define custom activa-
tion and editing functions for items and dependencies, show or hide specific elements in
the user interface, enable or disable features for the components, and/or assign complex
built-in (or even custom) behaviors to run when items or dependencies are updated by the
end user.

Activating items

You may define activation actions for item bars, dependency lines, and for the empty area
of the chart, to be run upon clicking, double clicking, or tapping, as configured by the de-
veloper and as available on the target platform, by setting content controller’s activator
property to an object that conforms to GanttChartContentActivator protocol:

class ViewController: NSViewController, GanttChartContentActivator {

 override func viewDidLoad() {

 let contentController = GanttChartContentController(…)

 contentController.activator = self

 …

 }

 func activate(bar: GanttChartBar) {

 let item = bar.item
 …

 }
 func activate(dependencyLine: GanttChartDependencyLine) {

 let dependency = dependencyLine.dependency
 …

 }
 func activate(position: GanttChartPosition) {

 let row = position.row, time = position.time
 …

 }
}

Editing items

You may define edit actions for items and dependencies presented by the chart component,
to be run upon selecting Edit actions in the contextual menus and upon creating new items,
by setting content controller’s editor property to an object that conforms to GanttChartCon-
tentEditor protocol. The Edit actions will appear, however, only if the controller’s allows-
EditingElements and allowsEditingItems/allowsEditingDependencies properties are set to true:

class ViewController: NSViewController, GanttChartContentEditor {

 override func viewDidLoad() {

 let contentController = GanttChartContentController(…)

 contentController.editor = self

 …

 }

 func edit(item: GanttChartItem) {

 …

 }
 func edit(dependency: GanttChartDependency) {

 …

 }
}

31

edit functions should allow the end user to update the appropriate objects. Note that when
managed properties change (either updated by these functions or by Ganttis internal han-
dlers for drag and drop editing operations), hasChanged flags of the items and dependen-
cies are set to true. If you use GanttChartItemSource for item management, you can reset
them back to false in bulk (e.g. at save time) by simply calling its acceptChanges method.

Showing/hiding elements

To configure the elements to be shown or hidden on Gantt chart content component, or to
override the settings for individual item and dependency instances use these main settings:

GanttChartContentController properties:

GanttChartContentController settings:

preferredTimelineMargin Indicates the horizontal space size that is to be appended to
the left and right margins of the preferred timeline (when no
scrollable timeline value is specified).

showsAttachments Indicates whether to show attachment labels to the right side
of the bars in the diagram. Default: true.

viewportExtensionWidth,

viewportExtensionHeight

Indicate the horizontal and vertical extensions to be consid-
ered for the visible timeline upon filtering items and depen-
dencies that are to be drawn within the viewport (such as to
be able to draw marginal bars and dependency lines).

timeScale Indicates the time granularity to be used upon updating the
time values for items in the diagram. By default it is set to the
continuous scale, indicating that any time is acceptable.

Other values may be defined using intervalsWith(period, in
unit, origin, rule), where period is the time scale period, given
in the specified unit, optionally considering the origin date and
time, and the specified floating point rounding rule.

timeScaleSchedule Optional schedule to use when applying time granularity upon
initializing or updating the time values for items in the dia-
gram.

showsLabels Indicates whether to show labels on bars in the diagram. De-
fault: true.

showsToolTips Indicates whether to show tooltips when hovering bars in the
diagram with the mouse cursor (macOS only). Default: true.

showsCompletionBars Indicates whether to show completion bars for the bars in the
diagram. Default: true.

showsDependencyLines Indicates whether to show dependency lines (between bars of
dependent items) in the diagram. Default: true.

32

GanttChartItem settings:

GanttChartDependency settings:

Enabling/disabling features

To configure the enabled and disabled features of Gantt chart header and content compo-
nents, or to override the settings for individual item and dependency instances use these
settings:

GanttChartHeaderController settings:

GanttChartContentController settings:

minBarWidth The minimum bar width to use regardless of zoom level, for
the very short and momentary non-milestone items.

temporaryBarWidth The bar width to use for an item that is about to be created
(while displaying the context menu that allows the item’s cre-
ation).

isHighlighted Indicates that the bar should be highlighted in the diagram
(regardless of focus). Useful (optionally in conjunction with
dependency.settings.isHighlighted) to highlight chains of Gantt
Chart items (and dependencies). Default: false.

isHighlighted Indicates that the dependency line should be highlighted in
the diagram (regardless of focus). Useful (optionally in con-
junction with item.settings.isHighlighted) to highlight chains
of Gantt Chart (items and) dependencies. Default: false.

allowsZooming Indicates whether to allow zooming operations on the diagram
header using dragging. Default: true.

usesCache Indicates whether to use an internal cache for certain user in-
terface related computed values in order to improve the run-
time performance of the component. (When false, the cache is
cleared upon each drawing operation.) Default: true.

allowsZooming Indicates whether to allow zooming operations on the diagram
using pinch gestures (iOS only — on macOS zooming can be
enabled and disabled from GanttChartHeaderController’s set-
tings). Default: true.

allowsActivatingBars Indicates whether to run activation actions for bars in the dia-
gram. Default: true.

isReadOnly Indicates whether the diagram elements are all read only. De-
fault: false.

33

isTypeReadOnly[type] Indicates whether the diagram elements for a specific item
type are all read only.

allowsActivatingDepen-
dencyLines

Indicates whether to run activation actions for dependency
lines in the diagram. Default: true.

allowsMovingBars Indicates whether to allow moving bars horizontally in the di-
agram using dragging operations. Default: true.

allowsMovingBarsFor-
Type[type]

Indicates whether to allow moving specific types of bars hori-
zontally in the diagram using dragging operations when al-
lowsMovingBars is set to true.

allowsResizingBars Indicates whether to allow resizing bars horizontally in the di-
agram using dragging operations. When setting this property,
allowsResizingBarsAtStart is also set to the same value. De-
fault: true.

allowsResizingBarsFor-
Type[type]

Indicates whether to allow resizing specific types of bars hori-
zontally in the diagram using dragging operations when al-
lowsResizingBars is set to true. When setting this property, al-
lowsResizingBarsForType is also set to the same value.

allowsResizingBarsAtS-
tart

Indicates whether to allow resizing bars horizontally at their
start in the diagram using dragging operations when allowsRe-
sizingBars is true. Default: true.

allowsResizingBarsAtS-
tartForType[type]

Indicates whether to allow resizing specific types of bars hori-
zontally at their start in the diagram using dragging operations
when allowsResizingBars and allowsResizingBarsAtStart are
set to true.

allowsMovingBarsVerti-
cally

Indicates whether to allow moving bars vertically in the dia-
gram using dragging operations. Default: true.

allowsMovingBarsVerti-
callyForType[type]

Indicates whether to allow moving specific types of bars verti-
cally in the diagram using dragging operations when allows-
MovingBarsVertically is set to true.

allowsResizingComple-
tionBars

Indicates whether to allow resizing completion on bars in the
diagram using dragging operations. Default: true.

allowsResizingComple-
tionBarsForType[type]

Indicates whether to allow resizing completion on specific
types of bars in the diagram using dragging operations when
allowsResizingCompletionBars is set to true.

preservesCompletedDura-
tionUponResizingBars

Indicates whether completion duration should be preserved,
when possible, upon resizing bars. By default it is set to true;
set this to false in order to preserve the completion percent
upon resizing bars, instead.

34

allowsCreatingBars Indicates whether new bars (and bound items) can be created
in the diagram (and the associated collection) by right clicking
empty area on macOS or long pressing it on iOS, and selecting
Create item or Create milestone from the contextual menu.
Default: true.

allowsCreatingMilestones Indicates whether milestone can be created (or only standard
items are permitted) when allowsCreatingBars is set to true.
Default: true.

allowsDeletingBars Indicates whether existing bars (and bound items) can be
deleted from the diagram (and the associated collection) by
right clicking the bar on macOS or tapping it on iOS, and se-
lecting Delete item from the contextual menu. Default: true.

allowsDeletingBarsFor-
Type[type]

Indicates whether existing bars of specific types (and bound
items) can be deleted from the diagram (and the associated
collection) by right clicking the bar on macOS or tapping it on
iOS, and selecting Delete item from the contextual menu.

allowsCreatingDependen-
cyLines

Indicates whether new dependency lines (and bound depen-
dencies) can be created in the diagram (and the associated
collection) by dragging from a temporary thumb that appears
to the right or left side of a bar to another bar. Default: true.

allowsCreatingDependen-
cyLinesForType[type]

Indicates whether new dependency lines (and bound depen-
dencies) can be created in the diagram (and the associated
collection) as a link from or to a specific item type.

allowsCreatingDependen-
cyLinesFromStart

Indicates whether dependency lines can be created from bar
start areas (fromStartTo* dependency types) when allowsCre-
atingDependencyLines is set to true. Default: true.

allowsCreatingDependen-
cyLinesToFinish

Indicates whether dependency lines can be created to bar fin-
ish areas (from*ToFinish dependency types) when allowsCre-
atingDependencyLines is set to true. Default: true.

allowsDeletingDependen-
cyLines

Indicates whether existing dependency lines (and bound de-
pendencies) can be deleted from the diagram (and the associ-
ated collection) by right clicking the line on macOS or tapping
it on iOS, and selecting Delete dependency from the contextu-
al menu. Default: true.

allowsDeletingDependen-
cyLinesForType[type]

Indicates whether existing dependency lines (and bound de-
pendencies) from or to a specific item type can be deleted
from the diagram (and the associated collection).

editsNewlyCreatedItems Indicates whether to call editing for the newly created item
upon adding them to the collection, with support from the edi-
tor delegate. Default: true.

35

GanttChartItem settings:

editsNewlyCreatedDepen-
dencies

Indicates whether to call editing for the newly created depen-
dencies upon adding them to the collection, with support from
the editor delegate. Default: true.

allowsSelectingElements

allowsEditingElements,

allowsEditingItems,
allowsEditingDepen-
dencies

Indicate whether to allow selecting and editing elements when
an editor delegate is defined (bars and dependency lines) in
the diagram; set them to true if you want end users to be able
to select and perform edit operations for the elements in the
diagram, respectively. Defaults: false for generic elements
based settings, true for specific items/dependencies settings.

selectsNewlyCreatedEle-
ments

Indicates whether a newly created element becomes automati-
cally selected if allowsSelectingElements is set to true. Default:
false.

selectsEditedElements Indicates whether an edited element becomes automatically
selected if allowsSelectingElements is set to true. Default:
false.

numberOfClicksRequired-
ToActivateElements

Indicates the number of clicks required to activate elements on
macOS. By default 1; set it to 2 to get elements activated on
double clicks only.

autoScrollMargin, auto-
ScrollInterval

Defines the size of the left, right, top, and bottom areas where
hovering during drag and drop operations would perform
auto-scrolling, and its periodicity.

autoShiftsScrollableTime-
lineBy

Indicates whether the scrollable timeline is automatically up-
dated when the end user scrolls to its ends and what time in-
terval it should be shifted by (in seconds.) Default: nil.

alternativeRowsOnCount Indicates whether alternative row style is applied to either
even or odd rows depending on the row count. Default: true.

usesCache Indicates whether to use an internal cache for certain user in-
terface related computed values in order to improve the run-
time performance of the component. (When false, the cache is
cleared upon each drawing operation.) Default: true.

isReadOnly If set to true, overrides controller’s settings.

allowsMovingBar,

allowsResizingBar,

allowsResizingBarAtStart,

allowsMovingBarVertical-

ly,

allowsResizingComple-

tionBar,

allowsDeletingBar

Set in bulk by inverting isReadOnly value. If set to false, over-
ride controller’s settings.

36

GanttChartDependency settings:

Zoom limits

The range of zoom levels from and up to which the end user is allowed to slide when zoom-
ing is enabled (such as by performing dragging operations in the header area or by pinch-
ing the chart on iOS) can be configured by the developer in the header controller’s settings:

headerController.settings.minZoom = 0.4
headerController.settings.maxZoom = 8

You should carefully select the minimum zoom level because if the end user zooms out to
the limit and the resulting chart width becomes less than the actually available width of the
view, the chart will simply be left aligned and unused space would remain in the right side
— and the end users may consider this as an unexpected behavior of your application.

As previously discussed, note as well that as on iOS there are limits for the total size of the
chart area’s UIView, and therefore you should also carefully select (and throughly test) the
maximum zoom limit in conjunction with the hourWidth and scrollableTimeline of the con-
troller.

Appearance

Main appearance settings can be initialized at header and content controller objects’ level.
Some values, however, are overridable on item and dependency instances too. To configure
them, use the appropriate properties under settings.style and item.style dictionaries, also
available using the following shortcut templates:

headerController.style.value = …

contentController.style.value = …

item.style.value = …

dependency.style.value = …

allowsCreatingDependen-
cyLinesTo,

allowsCreatingDependen-
cyLinesFrom,

allowsDeletingDependen-
cyLinesTo,

allowsDeletingDependen-
cyLinesFrom

Set in bulk by inverting isReadOnly value. If set to false, over-
ride controller’s settings.

isReadOnly If set to true, overrides controller’s settings.

allowsDeletingDependen-
cyLine

Set by inverting isReadOnly value. If set to false, overrides
controller’s settings.

37

GanttChartHeaderController style properties:

GanttChartContentController style properties:

backgroundColor,

borders,

borderColor,

borderLineWidth

Properties that control the look of the header area. Borders
define where they should appear: left, right, top, bottom, and
each may have a different color and line width.

labelBorders,

labelBorderColor,

labelBorderLineWidth,

labelForegroundColor,

labelAlignment,

verticalLabelAlignment,

horizontalLabelInset

Properties that control the look of the header cell labels. Bor-
ders define where they should appear: left, right, top, bottom,
and each may have a different color and line width. Alignment
can be left, center, or right. Vertical alignment can be top or
center.

highlightingTimeFillColor Defines the default highlighting color for scheduled working
times in the diagram header (times of schedule) selected by an
item in scheduleHighlighters collection of the component.

highlightingTimeoutFill-
Color

Defines the default highlighting color for scheduled nonwork-
ing times in the diagram (timeouts of schedule) selected by an
item in scheduleHighlighters collection.

cellStyleSelector Optionally selects a cell style (overriding the default) given an
input time interval argument, the selector that generated it,
and the row of the selector.

cellStyle Defines an optional default cell style used for specific time in-
terval areas in the diagram (instead of the default time area
and label style settings) selected by an item in row selector
collections of the component.

backgroundColor,

borders,

borderColor,

borderLineWidth

Properties that control the look of the content area of the
chart.

rowBorderColor,

rowBorderLineWidth

Define the way row separators look like.

barFillColor,

barFillColorForType[type]

Main color of item bars for all or for a specific item type (stan-
dard, summary, or milestone.)

secondaryBarFillColor,

secondaryBarFillColor-

ForType[type]

Secondary color for item bars; if specified, it is used as a verti-
cal gradient stop at the top of item bars.

38

barStrokeColor,

barStrokeColorFor-

Type[type],

barStrokeWidth,

barStrokeWidthFor-

Type[type]

Border color and width of item bars for all or for a specific
item type (standard, summary, or milestone.)

completionBarFillColor,

completionBarFillColor-

ForType[type],

secondaryComple-

tionBarFillColor,

secondaryComple-

tionBarFillColorFor-
Type[type],

completionBarStroke-
Color,

completionBarStroke-
ColorForType[type],

completionBar-
StrokeWidth,

completionBar-
Stroke-
WidthForType[type]

Main and secondary (vertical gradient stop) colors, and border
color and width of item completion bars for all or for a specific
item type (standard, summary, or milestone.)

cornerRadius,

completionCornerRadius

Indicates the roundness of bar and completion bar corners.

verticalBarInset Determines the vertical positioning of a bar inside the row that
contains it. Use a higher value to obtain bars with smaller
height. Use zero to have the bar sharing the height of the row.

horizontalCompletion-
BarInset

Determines the horizontal positioning of a completion bar in-
side the main item bar that contains it.

verticalCompletionBarIn-
set

Determines the vertical positioning of a completion bar inside
the main item bar that contains it. Use a higher value to obtain
completion bars with smaller height. Use zero to have the
completion bar sharing the height of the main bar.

focusColor,

focusColorForType[type],

focusWidth,

focusWidthForType[type]

Supplemental border color and width to show on bars for all
or for a specific item type (standard, summary, or milestone)
when the focus is on, such as upon hovering and while the
contextual menu is shown on an item upon right clicking
(macOS) or long pressing (iOS).

39

highlightColor,

highlightColorFor-

Type[type],

highlightWidth,

highlightWidthFor-

Type[type]

Supplemental border color and width to show on bars for all
or for a specific item type (standard, summary, or milestone)
when the highlight is on (item.isHighlighted is set to true.)

selectionColor,

selectionColorFor-

Type[type],

selectionWidth,

selectionWidthFor-

Type[type]

Supplemental border color and width to show on bars for all
or for a specific item type (standard, summary, or milestone)
when the selection is on. Applicable only when allowsSelectin-
gElements setting is true.

labelForegroundColor,

labelForegroundColorFor-

Type[type],

labelAlignment,

labelFont,

horizontalLabelInset,

milestoneHorizontalLa-

belInset,

verticalLabelInset

Properties that control the look of the text labels shown on
item bars for all or for a specific item type (standard, summary
or, milestone). Alignment can be left, center, or right.

attachmentForeground-
Color,

attachmentFont,

horizontalAttachment-

Inset,

verticalAttachmentInset

Properties that control the look of the text labels shown to the
right side of item bars.

temporaryBarColor The color of the temporary bar shown when an item is about
to be created.

dependencyLineColor,

dependencyLineWidth

Properties that control the look of dependency lines.

dependencyLineFocus-
Width

Supplemental width to add to dependency lines when the fo-
cus is on, such as upon hovering and while the contextual
menu is shown on an item upon right clicking (macOS) or
long pressing (iOS).

dependencyLineHigh-
lightWidth

Supplemental width to add to dependency lines when the
highlight is on (dependency.isHighlighted is set to true.)

dependencyLineSelec-
tionWidth

Supplemental width to add to dependency lines when the se-
lection is on. Applicable only when allowsSelectingElements
setting is true.

40

dependencyLineThumb-
Color,

dependencyLineThum-
bRadius

Properties that control the look of temporary thumbs (circles)
appearing at the ends of item bars when hovering (on macOS)
or tapping (on iOS) those areas, allowing the end user to cre-
ate new dependencies by dragging arrow lines towards other
items.

dependencyLineArrow-
Width,

dependencyLineAr-
rowLength,

dependencyLine-
EndLength

Properties that control the drawing details of the dependency
arrow lines.

temporaryInvalidDepen-
dencyLineColor,

temporaryDependency-
LineColor

Properties that control the temporary arrow line drawn while
the dragging operation for creating a new dependency is in
progress. An invalid dependency line is drawn as dotted line
when the target of the dependency is not yet known or it’s not
accepted.

isTimeAreaBackground-
Extending

When set to true (default) it would extend the background of
the time areas to the space visible below the diagram rows
that it spans.

areTimeAreaBordersEx-
tending

When set to true (default) it would extend the vertical borders
of the time areas to the space visible below the diagram rows
that it spans.

timeAreaBorders,

timeAreaBorderColor,

timeAreaBorder-

LineWidth,

timeAreaForegroundCol-

or,

timeLabelAlignment,

timeLabelFont,

verticalTimeLabelAlign-

ment,

horizontalTimeLabelInset,

verticalTimeLabelInset

Properties that control the look of time areas (the vertical time
separators) generated by interval highlighters defined on the
content controller, and of their labels if they are set up to be
generated.

rowStyleSelector Optionally selects a row style (overriding the default rowStyle
or alternativeRowStyle) given an input row argument.

rowStyle Defines the default row style in the diagram.

alternativeRowStyle Specifies the row style for alternative rows (overriding the de-
fault rowStyle on each second row, starting with first if the to-
tal row count is even, or with a virtual row before the first if
the count is odd, if alternativeRows and settings.alternative-
RowsOnCount are set to true); by default it is set to only de-
fine a highly transparent gray background.

41

GanttChartItem style properties:

alternativeRows Indicates whether to use different style for alternative rows or
not; by default it is set to true.

itemStyleSelector Optionally selects an item style to use for a bar in the dia-
grams (instead of the default bar style settings), given an item
input argument.

dependencyStyleSelector Optionally selects a style to use for a dependency line in the
diagrams (instead of the default dependency line style set-
tings), given an input dependency argument.

highlightingTimeFillColor Defines the default highlighting color for scheduled working
times in the diagram (times of schedule) selected by an item in
scheduleHighlighters collection of the component.

highlightingTimeoutFill-
Color

Defines the default highlighting color for scheduled nonwork-
ing times in the diagram (timeouts of schedule) selected by an
item in scheduleHighlighters collection.

timeAreaStyleSelector Optionally selects a time area style (overriding the default)
given an input time interval argument and the selector that
generated it.

timeAreaStyle Defines an optional default time area style used for highlight-
ing specific time intervals in the diagram (instead of the de-
fault time area and label style settings) selected by an item in
intervalHighlighters collection of the component.

regionalBackgroundCol-
or, regionalBack-
groundInset

Properties that control the background for the region of the
item.

barFillColor,

secondaryBarFillColor,

barStrokeColor,

barStrokeWidth

Override controller’s item bar appearance settings.

completionBarFillColor,

secondaryComple-

tionBarFillColor,

completionBarStroke-

Color,

completionBar-

StrokeWidth

Override controller’s item completion bar appearance settings.

42

GanttChartDependency style properties:

Themes

A set of header and content style attributes can be logically reunited in a theme. The
framework provides a few built-in themes and supports customizing new ones, both on
macOS and iOS. The built-in themes are listed below, with macOS screenshots:

labelForegroundColor,

labelFont,

attachmentForeground-

Color,

attachmentFont

Override controller’s item label appearance settings.

regionalBackgroundColor Override controller’s item background appearance settings.

lineColor,

lineWidth

Override controller’s dependency appearance settings.

standard

aqua

43

To apply a theme you need to set the theme property of the target controller object (Gantt-
ChartController object supports delegating themes to its inner controllers automatically):

controller.theme = .jewel

Note that a minimal generic theme is also available — you can use that one as starting point
if you want to restyle all elements from scratch.

After you set a theme, default style attributes of objects accessible from the affected con-
trollers (including the inner controllers of GanttChartController) are automatically updated
to reflect the new theme setting but style dictionary overrides still apply.

If you want to define a custom theme that you could switch to and from with ease, you’d
need to define it as base style attribute values under each of the targeted controller objects
and bind them to the same custom name, and then simply apply the attribute set as a cus-
tom theme type later:

var style = GanttChartContentBaseStyle(.standard)
style.backgroundColor = Color(red: 0.5, green: 0.75, blue: 1, alpha: 0.125)
style.barFillColor = .orange
var headerStyle = GanttChartHeaderBaseStyle(.standard)
headerStyle.labelForegroundColor = Color(red: 0.25, green: 0.5, blue: 0.75)
contentController.setStyleForTheme("My", to: style)
headerController.setStyleForTheme("My", to: headerStyle)

controller.theme = .custom(name: "My")

Modes

Since macOS 10.14 and iOS 13 Apple supports dark mode in the operating systems. By de-
fault Ganttis automatically matches the style attributes to the current system appearance.

The developer may override the automatically determined mode (obtained by checking ef-
fectiveAppearance property of the root NSView on macOS or by looking at UIView’s traitCol-
lection.userInterfaceStyle on iOS) using mode property available at controller level.

The supported modes are light and dark, the former being the default when the system
doesn’t provide mode selection itself:

jewel

44

controller.mode = .dark

You can also define dark mode styles for your custom themes, if needed, and they will be
automatically be picked up when the current mode value of the component becomes dark
(this examples continues the initialization lines of code from the previous one):

var darkStyle = GanttChartContentBaseStyle(.standard, mode: .dark)
darkStyle.backgroundColor = Color(red: 0.25, green: 0.4, blue: 0.5, alpha: 0.25)
darkStyle.barFillColor = .orange
var darkHeaderStyle = GanttChartHeaderBaseStyle(.standard, mode: .dark)
darkHeaderStyle.labelForegroundColor = Color(red: 0.5, green: 0.75, blue: 0.9)
contentController.setStyleForTheme("My", mode: .dark, to: darkStyle)
headerController.setStyleForTheme("My", mode: .dark, to: darkHeaderStyle)

Note that if you update defaultStyle attributes, the previously loaded theme won’t react
anymore to appearance changes at system level. Therefore, the preferred and recommend-
ed way to define custom styles and still support mode changes is either using style dictio-
nary overrides or custom themes with dark mode support, as shown in the examples above.

Finally, it should be stated that dark mode is supported for Ganttis components also when
they are run on previous macOS versions or on iOS, but there you will need to write code
to imperatively set the controller’s mode property to get it applied at runtime.

Localization

Ganttis components may be localized by customizing the internal string values dynamically
at runtime, whenever needed, using the appropriate properties under settings.strings dictio-
nary, also available using the following shortcut template:

contentController.strings.value = "…"

GanttChartContentController string values:

createItem Label for create item command in chart area’s contextual menu.

createMilestoneItem Label for create milestone command in chart area’s contextual
menu.

editItem Label for edit item command in chart item’s contextual menu.

deleteItem Label for delete item command in chart item’s contextual menu.

45

Note that the date and time formats are fully configurable and a secondary locale argument
allows you to indicate the language that the names of weeks and months should be using
whenever a format argument is applied (e.g. upon TimeSelector shortcut initializers.)

Behaviors

In the framework’s context, a behavior is an object that may be applied (and automatically
reenforced upon updates) at item collection level — using GanttChartItemManager.behavior
property — performing specific actions on the managed items and dependencies.

For example, with built-in behaviors you can ensure that:

• a Gantt chart only has one item per row (regardless of vertical drag operations that the
end user performs) — GanttChartItemColumnBehavior;

• summary items may be expanded and collapsed upon activation (if contentController.set-
tings.activationTogglesExpansionForSummaryItems is true), and are automatically sched-
uled based on and, when updated, scheduling back their affected child items’ times —
GanttChartItemHierarchicalBehavior;

• successor items (considering the available dependencies) are rescheduled when predeces-
sors change, optionally respecting custom dependency lag definitions — GanttChartItem-
AutoSchedulingBehavior;

• specific time constraints on certain items are always respected — GanttChartItemCon-
straintBehavior;

• or a combination of the above — GanttChartItemBehaviorSet.

Classic behavior set

You can define a custom behavior by conforming to GanttChartItemBehavior protocol, but
the built-in support and shortcut setters are often enough. To apply a combination of de-
fault behaviors you can use the static GanttChartItemBehaviorSet.classic method that allows
you to set up arguments to identify which behaviors are included in your customized set:

deleteMilestoneItem Label for delete milestone command in chart item’s contextual
menu.

editDependency Label for edit dependency command in chart dependency’s contex-
tual menu.

deleteDependency Label for delete dependency command in chart dependency’s con-
textual menu.

46

The classic set obtained this way can be used upon GanttChartItemManager initialization
(behavior argument) or set as its behavior property later (having applyBehavior also called
afterwards, if it’s necessary to be enforced immediately at that time):

itemManager.behavior = GanttChartItemBehaviorSet.classic(…)

Item source behavioral settings

However, if you use GanttChartItemSource for item management, you can also use these
shortcut properties and methods instead of manually initializing a (classic or custom) be-
havior set:

hierarchyProvider GanttChartItemHierarchySource or GanttChartItemHierarchy
that define parent-child relationships among items (in a func-
tional or direct manner, respectively.)

autoSchedulingApplying-
ToUpdatingItems

Indicates whether to auto-schedule items when predecessors
change.

autoSchedulingAggregat-
ingSources

Indicates whether to check all source dependencies rather than
target dependencies when an item is updated.

autoSchedulingLag-
Provider

GanttChartDependencyLagSource or GanttChartDependencyLag-
Set that define dependency lags (in a functional or direct
manner, respectively.)

constraintProvider GanttChartItemConstraintSource or GanttChartItemConstraint-
Set that may define the time constraints for managed items
(in a functional or direct manner, respectively.)

preservingDurations Indicates whether the durations are to be preserved, as much
as possible, when applying auto-scheduling behavior(s).

isColumn Sets up column constraints (single item per row) applied au-
tomatically as an internally managed behavior for the compo-
nent.

addHierarchicalRela-
tions(parent, items)

Adds hierarchical relation definitions between the specified
parent and child items.

removeHierarchicalRela-
tions(parent, items)

Removes the hierarchical relation definitions between the
specified parent and child items.

removeFromHierar-
chy(item)

Removes hierarchical relation definitions that use the specified
item.

isAutoScheduling Sets up the auto scheduling constraints (based on dependen-
cies) applied automatically as an internally managed behavior
for the component.

setLag(for dependency, 
to value)

Sets the lag definition for a dependency to a specific value.

47

Diagram algorithms

The internal algorithms used by the component to prepare the diagram are defined by an
object that conforms to GanttChartDiagramGenerator protocol.

By design, however, the content controller component itself provides the default algorithms,
including the dependency line generation one.

Dependency line settings

If you need to control specific aspects of the default dependency line generation algorithm
you can use these content controller settings:

Diagram generator

To fully customize the way the diagram is prepared you can set the diagramGenerator prop-
erty of GanttChartContentController.

Method dependencyPolyline of the GanttChartDiagramGenerator object would receive the
start and finish rectangles and the type of the dependency to be drawn, along with supple-
mental flags indicating whether the source and target items are of type milestone, and
should return the list of points that the dependency line segments should be drawn
through. Note that this way you can only customize the points themselves, not the type of
curve that would link them.

For example, assuming that the owner class conforms to GanttChartDiagramGenerator pro-
tocol and that only finish-to-start dependency lines are allowed in the diagram, you can
draw single oblique lines rather than connected horizontal and vertical segments like this:

contentController.diagramGenerator = self

removeLag( 
from dependency)

Removes the lag definition from a dependency.

setConstraints(for item, 
to value)

Sets the constraint definitions of an item to a specified set of
values.

removeConstraints( 
from item)

Removes the constraint definitions of an item.

drawsVerticallyEndingDe-
pendencyLinesWhen-
Applicable

Indicates whether finish-to-start dependency lines between
items that are time-close to each other should be defined by
only two segments, ending by a vertical one. By default true.

drawsDependencyLinesS-
panningHorizontalDis-
tancePrimarilyOn-
SourceRow

Boolean that indicates whether dependency lines are generat-
ed so that they use mostly the source item’s row, rather than
the target item’s row. Useful if multiple dependencies end on
the same, and less start from the same item. By default false.

48

func dependencyPolyline(from start: Rectangle, to finish: Rectangle,

 type: GanttChartDependencyType,

 fromMilestone: Bool, toMilestone: Bool) -> Polyline {

 return [start.centerRight, finish.centerLeft]

}

Row headers

As OutlineGanttChart component is only available on
macOS, you can configure GanttChart component on
iOS to display row headers for the chart area:

controller.rowHeadersWidth = 100

controller.rowHeaderProvider =

 GanttChartRowHeaderSource { row in

 "Res. \(row + 1)" }

Note that this feature is not available on macOS.

Custom drawing

While multiple settings of Ganttis components can be easily changed through built-in prop-
erties and/or by implementing objects that conform to specific protocols, to update the way
user interface components draws content (and, on macOS, also provide tooltips) you will
need to inherit from GanttChart (or GanttChartHeader and/or GanttChartContent) views.

To define a custom view inheriting from GanttChart component, override the appropriate
draw* and tooltip* methods — see the following sections for details. The open method
names are self descriptive, and their arguments would be set up by the component for you.

class CustomGanttChart: GanttChart {

 override func drawBorder(for row: Row, in rectangle: NSRect,

 p1: NSPoint, p2: NSPoint,

 lineWidth: CGFloat, color: NSColor) {

 let border = NSBezierPath()

 border.move(to: p1)

 border.line(to: p2)

 border.lineWidth = lineWidth * 2

 color.setStroke()

 border.stroke()

 }

 override func tooltip(for item: GanttChartItem) -> String? {

 return "Custom tooltip: \(item.details)"

 }

}

Note, however, that for developing iOS Cocoa Touch views you would will need to adapt
the arguments accordingly (e.g. CGRect and UIColor instead of NSRect and NSColor, etc.)

For convenience, the methods presented below are available when building iOS apps, while
similar signature extension points are provided for the macOS platform as well.

Layout

Open methods for drawing the main component areas (header, content, and rows):

49

drawHeaderBackground(color: UIColor, size: CGSize)

drawHeaderBorder(in rectangle: CGRect, p1: CGPoint, p2: CGPoint,

 lineWidth: CGFloat, color: UIColor)

drawContentBackground(color: UIColor, size: CGSize)

drawContentBorder(in rectangle: CGRect, p1: CGPoint, p2: CGPoint,

 lineWidth: CGFloat, color: UIColor)

drawBackground(for row: Row, in rectangle: CGRect, color: UIColor)

drawRegionalBackground(for item: GanttChartItem, in rectangle: CGRect, 
 color: UIColor)

drawBorder(for row: Row, in rectangle: CGRect, p1: CGPoint, p2: CGPoint,

 lineWidth: CGFloat, color: UIColor)

Bars

Open methods for drawing the item bars in the chart area — note that the default imple-
mentation of the wrapper draw bar method will call the following ones:

draw(bar: GanttChartBar)

drawBar(for item: GanttChartItem, in rectangle: CGRect,

 fillColor: UIColor, secondaryFillColor: UIColor, strokeColor: UIColor?,

 strokeWidth: CGFloat, cornerRadius: CGFloat,

 isHighlighted: Bool, isFocused: Bool, isSelected: Bool,

 highlightColor: UIColor, focusColor: UIColor, selectionColor: UIColor,

 highlightWidth: CGFloat, focusWidth: CGFloat, selectionWidth: CGFloat,

 allowsMoving: Bool,

 allowsResizing: Bool, allowsResizingAtStart: Bool,

 allowsMovingVertically: Bool, thumbDistance: CGFloat)

drawSummaryBar(for item: GanttChartItem, in rectangle: CGRect,

 fillColor: UIColor, secondaryFillColor: UIColor,

 strokeColor: UIColor?, strokeWidth: CGFloat,

 triangleInset: CGFloat, triangleScale: CGFloat,

 isExpanded: Bool,

 isHighlighted: Bool, isFocused: Bool, isSelected: Bool,

 highlightColor: UIColor,

 focusColor: UIColor, selectionColor: UIColor,

 highlightWidth: CGFloat,

 focusWidth: CGFloat, selectionWidth: CGFloat,

 allowsMoving: Bool,

 allowsResizing: Bool, allowsResizingAtStart: Bool,

 allowsMovingVertically: Bool, thumbDistance: CGFloat)

drawMilestone(for item: GanttChartItem, in rectangle: CGRect,

 fillColor: UIColor, secondaryFillColor: UIColor,

 strokeColor: UIColor?, strokeWidth: CGFloat,

 isHighlighted: Bool, isFocused: Bool, isSelected: Bool,

 highlightColor: UIColor,

 focusColor: UIColor, selectionColor: UIColor,

 highlightWidth: CGFloat,

 focusWidth: CGFloat, selectionWidth: CGFloat,

 allowsMoving: Bool, allowsMovingVertically: Bool,

 thumbDistance: CGFloat)

drawCompletionBar(for item: GanttChartItem, in rectangle: CGRect,

 fillColor: UIColor, secondaryFillColor: UIColor,

 strokeColor: UIColor?, strokeWidth: CGFloat,

 cornerRadius: CGFloat,

 allowsResizing: Bool, thumbDistance: CGFloat)

drawBarLabel(for item: GanttChartItem, in rectangle: CGRect, text: String,

 foregroundColor: UIColor, alignment: NSTextAlignment, font: NSFont)

drawAttachmentLabel(for item: GanttChartItem, in rectangle: CGRect,

 text: String, foregroundColor: UIColor, font: NSFont)

50

Dependency lines

Open methods for drawing the dependency lines in the chart area — note that the default
implementation of the wrapper draw dependencyLine method will call the following ones:

draw(dependencyLine: GanttChartDependencyLine)

drawDependencyLine(for dependency: GanttChartDependency,

 through points: [CGPoint], color: UIColor, width: CGFloat,

 arrowWidth: CGFloat, arrowLength: CGFloat,

 isHighlighted: Bool, isFocused: Bool, isSelected: Bool,

 highlightWidth: CGFloat,

 focusWidth: CGFloat, selectionWidth: CGFloat)

drawDependencyLineThumb(for item: GanttChartItem,

 type: GanttChartDependencyEndType,

 center: CGPoint, radius: CGFloat, color: UIColor)

drawTemporaryDependencyLine(from: GanttChartItem, to: GanttChartItem?,

 type: GanttChartDependencyType,

 through points: [CGPoint], color: UIColor,

 width: CGFloat,

 arrowWidth: CGFloat, arrowLength: CGFloat,

 dashWidth: CGFloat)

drawTemporaryBar(in rectangle: CGRect, color: UIColor,

 cornerRadius: CGFloat, dashWidth: CGFloat)

Time areas

Open methods for drawing the time area in header and chart areas (including their labels):

drawHeaderTimeArea(for highlighter: ScheduleTimeSelector,

 in rectangle: CGRect, fillColor: UIColor)

drawContentTimeArea(for highlighter: ScheduleTimeSelector,

 in rectangle: CGRect, fillColor: UIColor)

drawHeaderCell(for selector: TimeSelector, of row: GanttChartHeaderRow,

 in rectangle: CGRect, backgroundColor: UIColor)

drawHeaderCellBorder(for selector: TimeSelector, of row: GanttChartHeaderRow,

 in rectangle: CGRect, p1: CGPoint, p2: CGPoint,

 lineWidth: CGFloat, color: UIColor)

drawHeaderCellLabel(for selector: TimeSelector, of row: GanttChartHeaderRow,

 in rectangle: CGRect, text: String,

 foregroundColor: UIColor, alignment: NSTextAlignment,

 font: NSFont, verticalAlignment: VerticalTextAlignment)

drawContentTimeArea(for highlighter: TimeSelector, in rectangle: CGRect,

 backgroundColor: UIColor)

drawContentTimeAreaBorder(for highlighter: TimeSelector, in rectangle: CGRect,

 p1: CGPoint, p2: CGPoint, lineWidth: CGFloat,

 color: UIColor)

drawContentTimeAreaLabel(for highlighter: TimeSelector, in rectangle: CGRect,

 text: String, foregroundColor: UIColor,

 alignment: NSTextAlignment, font: NSFont,

 verticalAlignment: VerticalTextAlignment)

Tooltips

Open methods for providing the content to be displayed as item and dependency tooltips —
applicable on macOS only:

toolTip(for item: GanttChartItem) -> String?

toolTip(for dependency: GanttChartDependency) -> String?

51

Reloading data

You may reload underlying data and refresh the Gantt chart diagram at any time (such as
when you change Gantt chart item values in response to other events than end user’s ma-
nipulation within the Gantt chart components) by calling this method supported by Gantt-
Chart and GanttChartContent components:

reloadData()

Exporting images

On macOS you can export images with the content displayed by GanttChart, GanttChart-
Header, and GanttChartContent components using these read-only properties:

Outline views

On macOS you can also use an OutlineGanttChart component instance to display and man-
age a Gantt chart diagram in association and synchronized with an NSOutlineView, present-
ing and allowing the end user to expand, collapse, and edit values for hierarchical items
associated to the chart rows:

Data source

To set up an OutlineGanttChart instance you need to provide a dataSource of type Outline-
GanttChartDataSource, that is partially similar to an NSOutlineViewDataSource that would
would need to set on a classic NSOutlineView.

An OutlineGanttChart data set would be defined instantiating these types:

• OutlineGanttChartRow — outline view item synchronized to a row in the chart area;

image The image of the view, as NSImage type.

imageRepresentation The representation of the view, as NSBitmapImageRep type.

imageData Image content using PNG format, returned as Data type (easily
exportable to a file, for example.)

52

• OutlineGanttChartItem — presented as a bar in the chart area (very similar to Gantt-
ChartItem), displayed on the row associated to its OutlineGanttChartRow container;

• OutlineGanttChartDependency — dependency between two chart items (possibly from
different rows), presented as an arrow line in the chart area that connects the linked
items’ bars (very similar to GanttChartDependency).

The data source provider should define these functions (they will be called by the compo-
nent when specific information is needed):

• outlineGanttChart(_:child:ofItem) — should return an OutlineGanttChartRow representing
the nth child item of the specified parent row, or the nth root item in the collection (if the
received parent item is nil);

• outlineGanttChart(_:isItemExpandable) — should indicate whether or not a specific out-
line item (row) is expandable in the hierarchy, i.e. whether it has child items (rows);

• outlineGanttChart(_:numberOfChildrenOfItem) — should return the number of child items
of the specified parent row, or the number of root items available in the collection (if the
received parent item is nil);

• outlineGanttChart(_:objectValueFor:byItem) — should return the value to be presented in
the outline view’s cell corresponding to the specified table column (received as objectVal-
ueFor argument) for the specified row item;

• outlineGanttChart(_:setObjectValue:for:byItem) — should save the updated value (received
as setObject argument) of the outline view’s cell corresponding to the specified table col-
umn (received as for argument) for the specified row item;

• outlineGanttChart(_:dependenciesFor) — should return an array of OutlineGanttChartDe-
pendency objects that refer the specified OutlineGanttChartItem objects (received as de-
pendenciesFor array argument); this function will be called when a specific set of chart
items are known to be displayed in the viewport of the chart area, allowing you to opti-
mize the dependencies retrieved for drawing by limiting them to those that need to ap-
pear between those items’ bars;

• outlineGanttChart(_:timeDidChangeFor:from) — should save the updated time range of a
specified OutlineGanttChartItem (received as timeDidChangeFor argument);

• outlineGanttChart(_:completionDidChangeFor:from) — should save the updated comple-
tion rate of a specified OutlineGanttChartItem (received as completionDidChangeFor ar-
gument);

• outlineGanttChart(_:rowDidChangeFor:from:to) — should save the updated row item of a
specified OutlineGanttChartItem (received as rowDidChangeFor argument) when it moves

53

from an original OutlineGanttChartRow container (from argument) to another one (to ar-
gument);

• outlineGanttChart(_:didAddItem:to) — should save a newly created OutlineGanttChart-
Item (received as didAddItem argument) when it is added to a specified OutlineGantt-
ChartRow container (to argument);

• outlineGanttChart(_:didRemoveItem:from) — should delete an OutlineGanttChartItem (re-
ceived as didRemoveItem argument) when it is removed from a specified OutlineGantt-
ChartRow container (from argument);

• outlineGanttChart(_:didAddDependency), outlineGanttChart(_:didRemoveDependency) —
should save a newly created OutlineGanttChartDependency (received as didAddDependency
argument) when it is added and delete an OutlineGanttChartDependency (received as did-
RemoveDependency argument) when it is removed.

When the data source changes, you should mark the outline Gantt Chart as needing redis-
play, so it will reload the data for visible cells and draw the new values and the update dia-
gram by calling OutlineGanttChart’s reloadData() method.

Settings

An OutlineGanttChart instance can configured by using the following settings:

schedule Defines the schedule to applied to the outline Gantt chart’s
item manager.

autoApplySchedule Allows applying the schedule set up on the internal outline
Gantt chart's item manager both at initialization time and
upon vertical scrolling actions. Default: false.

isAutoScheduling Sets up the auto scheduling constraints (based on dependen-
cies) applied automatically as an internally managed behavior
for the component. Default: false.

behavior Defines an optional behavior to be applied to the outline Gantt
chart's item manager besides the default hierarchical one, and
auto-scheduling if set. If autoApplyBehavior is false, the behav-
ior is applied to the visible items upon item changes; you may,
however, call applyBehavior function manually if you want to
apply it to the currently visible items immediately.

autoApplyBehavior Allows applying the behavior set up on the internal outline
Gantt chart's item manager both at initialization time and
upon vertical scrolling actions. Default: false.

isPagingEnabled Allows loading items with paging by loading subsequent
chunks of items only when the end user scrolls down. By de-
fault pagination is not enabled.

54

Also, you can refer the following internal components of an OutlineGanttChart instance to
set up further user interface settings:

minPageSize Defines the minimum number of items of a page when is-
PagingEnabled is set to true. If nil or too low, the number of
actually visible items in the viewport is assumed to be a page.
Default: nil.

minPageCount Defines the minimum number of pages to be initialized when
isPagingEnabled is set to true. Default: 2.

splitView The NSSplitView component that separates the Gantt chart
(right side) and its associated outline view (left side).

outlineHeaderSpacingBox An NSBox that occupies the space available between the top
bound of OutlineGanttChart and the top of the internal out-
lineView’s frame which is positioned to ensure outline items
and chart rows are vertically synchronized; specifically, when
multiple header rows are displayed in the Gantt chart area, the
spacing view height will cover the header rows that do not
match the single header row of the outlineView.

outlineHeaderSpacing-
Label

The NSTextView component that appears by default within out-
lineHeaderSpacingView, which can be used, for example, to
present a title for the diagram.

outlineView, 
outlineScrollView, 
outlineClipView

The NSOutlineView component that presents the hierarchy of
OutlineGanttChartRow objects, and its associated NSScrollView
and NSClipView instances.

ganttChart The inner GanttChart component that presents the diagram
defined by OutlineGanttChartItem and OutlineGanttChartDe-
pendency instances.

55

SwiftUI components

Gantt chart views

GanttChartView

Available for both macOS 10.15+ and iOS 13+, GanttChartView is a SwiftUI view that
wraps an internal Cocoa or Cocoa Touch based GanttChart component. In a SwiftUI project,
you can use GanttChartView by creating an instance somewhere in a container view’s body,
e.g.:

GanttChartView(
 items: $items,
 dependencies: $dependencies,
 schedule: schedule,
 headerRows: [
 GanttChartHeaderRow(.weeks(startingOn: .monday)),
 GanttChartHeaderRow(.days, format: .dayOfWeekShortAbbreviation)],
 scrollableTimeline: TimeRange(from: Time.current.weekStart,
 to: Time.current.adding(years: 1).weekFinish),
 scheduleHighlighters: [ScheduleTimeSelector(.weekends)],
 intervalHighlighters: [TimeSelector(.weeks(startingOn: .monday))],
 timeScale: .intervalsWith(period: 15, in: .minutes),
 desiredScrollableRowCount: 50,
 theme: theme,
 onItemAdded: { item in … },
 onItemRemoved: { item in … },
 onDependencyAdded: { dependency in … },
 onDependencyRemoved: { dependency in … },
 onTimeChanged: { item, originalValue in … },
 onCompletionChanged: { item, originalValue in … },
 onRowChanged: { item, originalValue in … })

The full list of supported arguments of GanttChartView constructor is presented in the table
below:

items A binding to items to present as bars in the Gantt chart. Re-
quired.

dependencies A binding to dependencies to present as arrow lines between
item bars in the Gantt chart. Required.

schedule Defines the working and nonworking time for items presented
in the Gantt chart.

56

The first arguments to pass to GanttChartView constructor are items and dependencies,
which should be bindings to arrays of GanttChartViewItem and GanttChartViewDependency
objects, respectively. You can set them up, for example, in an onAppear handler of your con-
tainer view, e.g.:

var items = [
 GanttChartViewItem(label: "A", row: 0, start: date(1), finish: date(2)),
 GanttChartViewItem(label: "B", row: 1, start: date(1), finish: date(3)), …]
items[0].style.barFillColor = .darkGreen
var dependencies = [
 GanttChartViewDependency(from: items[0].id, to: items[1].id), …]
dependencies[0].style.lineColor = .darkGreen
items.append(GanttChartViewItem(row: 1, time: date(6), type: .milestone))
dependencies.append(GanttChartViewDependency(from: items[1].id, 
 to: items[items.count-1].id))
self.items = items
self.dependencies = dependencies

The supported arguments of GanttChartViewItem and GanttChartViewDependency structures
are similar to those of GanttChartItem and GanttChartDependency, respectively. Supplemen-

headerRowHeight,

headerRows,

rowHeight,

hourWidth,

scrollableTimeline,

visibilitySchedule,

scheduleHighlighters,

intervalHighlighters,

timeScale,

showsAttachments,

desiredScrollableRow-

Count,

rowHeaders,

rowHeadersWidth

Identic to the similarly named GanttChart properties.

headerSettings, 
headerStyle

contentSettings, 
contentStyle

Define settings and styles for header and content areas of the
Gantt chart.

theme Theme to apply to the internal Gantt chart component.

onInit,

onItemAdded,

onItemRemoved,

onDependencyAdded,

onDependencyRemoved,

onTimeChanged,

onCompletionChanged,

onRowChanged,

onDeinit

Allow specifying functions or closures to handle specific events
occurring in the Gantt chart interface.

57

tary, each defines an automatically initialized id field in order to conform to Identifiable pro-
tocol.

OutlineGanttChartView

Available only for macOS 10.15+, OutlineGanttChartView is a SwiftUI view that wraps an
internal Cocoa based OutlineGanttChart component. In a SwiftUI project, you can use Out-
lineGanttChartView by creating an instance somewhere in a container view’s body, e.g.:

OutlineGanttChartView(
 rows: $rows,
 chartDependencies: $chartDependencies,
 columns: [
 .outline(title: "Tasks"),
 .start, .finish, .completion,
 .attachment(title: "Assignments"),
 .value("Custom", title: "Custom", alignment: .left),
 .details],
 outlineHeader: "Project",
 schedule: schedule,
 headerRows: [
 GanttChartHeaderRow(.weeks(startingOn: .monday)),
 GanttChartHeaderRow(.days, format: .dayOfWeekShortAbbreviation)],
 scrollableTimeline: TimeRange(from: Time.current.weekStart,
 to: Time.current.adding(years: 1).weekFinish),
 scheduleHighlighters: [ScheduleTimeSelector(.weekends)],
 intervalHighlighters: [TimeSelector(.weeks(startingOn: .monday))],
 timeScale: .intervalsWith(period: 15, in: .minutes),
 theme: theme,
 onChartItemAdded: { item in … },
 onChartItemRemoved: { item in … },
 onChartDependencyAdded: { dependency in … },
 onChartDependencyRemoved: { dependency in … },
 onTimeChanged: { item, originalValue in … },
 onCompletionChanged: { item, originalValue in … },
 onCellValueChanged: { item, column, value in … })

The full list of supported arguments of OutlineGanttChartView constructor is presented in
the table below:

rows A binding to rows to present as bars in the outline Gantt chart.
Required.

chartDependencies A binding to dependencies to present as arrow lines between
item bars in the Gantt chart area. Required.

columns Define the columns to be presented in the outline area (left
side). Custom columns can also be added, either as .value
type, mapping custom values from individual items’ dictionar-
ies, or as fully .custom entries defining cells using getter and
setter functions or closures.

outlineHeader Text to be presented as a header for the table when multiple
header rows are shown in the Gantt chart area.

58

The first arguments to pass to OutlineGanttChartView constructor are rows and chartDepen-
dencies, which should be bindings to arrays of OutlineGanttChartViewRow and Outline-
GanttChartViewDependency objects, respectively. You can set them up, for example, in an
onAppear handler of your container view, e.g.:

var rows: [OutlineGanttChartViewRow] = [
 OutlineGanttChartViewRow(
 label: "Task 1",
 chartItems: [
 OutlineGanttChartViewItem(
 label: "Task 1",
 start: now, finish: now.adding(days: 3),
 details: "Task 1 details",
 type: .summary)],
 children: [
 OutlineGanttChartViewRow(
 chartItems: [
 OutlineGanttChartViewItem(
 label: "Task 1.1",
 start: now, finish: now.adding(days: 2),
 completion: 0.5, attachment: "Resource 1",
 details: "Task 1.1 details"),
 OutlineGanttChartViewItem(

schedule Defines the working and nonworking time for items presented
in the Gantt chart.

headerRowHeight,

headerRows,

rowHeight,

hourWidth,

scrollableTimeline,

visibilitySchedule,

scheduleHighlighters,

intervalHighlighters,

timeScale,

showsAttachments

Identic to the similarly named GanttChart properties.

headerSettings, 
headerStyle

contentSettings, 
contentStyle

Define settings and styles for header and content areas of the
Gantt chart.

theme Theme to apply to the internal Gantt chart component.

onInit,

onChartDependency-

Added,

onChartDependencyRe-

moved,

onTimeChanged,

onCompletionChanged,

onCellValueChanged,

onDeinit

Allow specifying functions or closures to handle specific events
occurring in the outline Gantt chart interface.

59

 time: now.adding(days: 3), type: .milestone)])]),
 OutlineGanttChartViewRow(
 label: "Task 2",
 chartItems: [
 OutlineGanttChartViewItem(
 label: "Task 2",
 start: now.adding(days: 1), finish: now.adding(days: 4),
 completion: 0.25, attachment: "Resource 2",
 details: "Task 2 details")]), …]
var chartDependencies: [OutlineGanttChartViewDependency] = [
 OutlineGanttChartViewDependency(
 from: rows[0].children[0].chartItems[0],
 to: rows[1].chartItems[0],
 type: .fromStartToStart),
 OutlineGanttChartViewDependency(
 from: rows[0].children[0].chartItems[0],
 to: rows[0].children[0].chartItems[1]), …]
rows[1].values["Custom"] = "Second"
self.rows = rows
self.chartDependencies = chartDependencies

The supported arguments of OutlineGanttChartViewRow structure constructor are:

• label — identifier text mapped to each row (displayed in the hierarchical column of the
outline view);

• chartItems — array of OutlineGanttChartViewItem objects (see more information below);

• children — array of hierarchical child row objects shown upon expanding this one;

• values — dictionary of custom values applied to individual rows;

• context — any external object to bind this row to.

The supported arguments of OutlineGanttChartViewItem, and OutlineGanttChartViewDepen-
dency structures are similar to those of GanttChartItem and GanttChartDependency, respec-
tively.Supplementary, each structure defines an automatically initialized id field in order to
conform to Identifiable protocol.

Alternative SwiftUI integration solution

You can also create your own wrappers for the Cocoa and Cocoa Touch based Ganttis com-
ponents and use them in your SwiftUI apps using NSViewRepresentable and UIViewRepre-
sentable, respectively, as presented in this tutorial from Apple – for specific details see these
macOS and iOS sample apps.

60

https://developer.apple.com/tutorials/swiftui/interfacing-with-uikit
https://github.com/DlhSoftTeam/GanttisSamples/tree/master/GanttChart.SwiftUI.macOS
https://github.com/DlhSoftTeam/GanttisSamples/tree/master/GanttChart.SwiftUI.iOS

Technical reference

API documentation for Ganttis and GanttisTouch modules is available in Xcode Quick Help.
You can also simply right click on a type or member name in the source code editor and se-
lect Jump to Definition to view the item among other public Ganttis headers.

Support

Remember that you may also contact DlhSoft whenever you have technical (or any other
type of) questions related to the product — the team is heading to always answer with the
highest possible responsiveness level, and always in full detail so that you would rarely
need to ask further questions afterwards.

Licensing

You can order a Ganttis license from DlhSoft Web site. To setup the string code obtained
upon purchasing the license to your application, import Ganttis or GanttisTouch and set the
license property of the module in your AppDelegate’s initializer:

Objective C considerations

Because Objective C doesn’t support setting module properties, to initialize the license val-
ue you will need to first define a helper NSObject based class using Swift, and then you can
simply instantiate it to run the license setup code from within your AppDelegate implement-
ed in Objective C:

macOS iOS
import Ganttis

class AppDelegate: NSObject, … {

 override init() {

 super.init()

 Ganttis.license = "…"

 }

}

import GanttisTouch

class AppDelegate: UIResponder, … {

 override init() {

 super.init()

 GanttisTouch.license = "…"

 }

}

Swift Objective C
public class GanttisLicense: NSObject {

 public override init() {

 Ganttis.license = "…"

 }

}

@implementation AppDelegate

- (instancetype)init {

 self = [super init];

 [GanttisLicense new];

 return self;

}

61

http://dlhsoft.com/Ganttis/Support.aspx
https://dlhsoft.com/Ganttis/Purchase.aspx

	Ganttis documentation
	Overview
	Setup
	Getting Ganttis package
	Initializing Xcode project
	Adding Ganttis framework
	Using Ganttis components in storyboards
	Importing and using Ganttis framework in code
	Objective C considerations

	Items and dependencies
	Item management
	Item fields
	Dependency fields
	Filtered objects
	Handling changes
	Newly created objects
	Collections
	Data source
	Time values
	Intervals
	Diagram sizing settings
	Zoom level
	Scroll and zoom changes

	Schedule and headers
	Schedule definitions
	Schedule objects
	Header rows
	Interval selectors
	Label generators
	Default formats
	Shortcut initializer call examples
	Dynamic rows
	Chart intervals
	Schedule based highlighting

	Settings and styling
	Options
	Activating items
	Editing items
	Showing/hiding elements
	Enabling/disabling features
	Zoom limits
	Appearance
	Themes
	Modes
	Localization
	Behaviors
	Classic behavior set
	Item source behavioral settings
	Diagram algorithms
	Dependency line settings
	Diagram generator
	Row headers
	Custom drawing
	Layout
	Bars
	Dependency lines
	Time areas
	Tooltips
	Reloading data
	Exporting images
	Outline views
	Data source
	Settings

	SwiftUI components
	Gantt chart views
	GanttChartView
	OutlineGanttChartView
	Alternative SwiftUI integration solution

	Technical reference
	Support
	Licensing
	Objective C considerations

